Double derivations of n-Lie algebras

نویسندگان

  • R. Bai College of Mathematics and Information Science‎, ‎Hebei University‎, ‎Baoding 071002‎, ‎P.R‎. ‎China.
  • Y. Gao College of Mathematics and Information Science‎, ‎Hebei University‎, ‎Baoding 071002‎, ‎P.R‎. ‎China.
  • Y. Zhang College of Mathematics and Information Science‎, ‎Hebei University‎, ‎Baoding 071002‎, ‎P.R‎. ‎China.
  • Z. Li College of Mathematics and Information Science‎, ‎Hebei University‎, ‎Baoding 071002‎, ‎P.R‎. ‎China.
چکیده مقاله:

After introducing double derivations of $n$-Lie algebra $L$ we‎ ‎describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual‎ ‎derivation Lie algebra $mathcal Der(L)$‎. ‎In particular‎, ‎we prove that the inner derivation algebra $ad(L)$‎ ‎is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra‎ ‎with certain constraints on the base field then the centralizer of $ad(L)$ in $mathcal D(L)$ is‎ ‎trivial and $mathcal D(L)$ is centerless‎. ‎In addition‎, ‎we obtain that for every perfect $n$-Lie‎ ‎algebra $L$ with zero center‎, ‎the triple derivations of the derivation algebra $mathcal Der(L)$ are exactly‎ ‎the derivations of $mathcal Der(L)$‎, ‎and the triple derivations of the inner derivation algebra $ad(L)$ are‎ ‎precisely the derivations of $ad(L)$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

lie $^*$-double derivations on lie $c^*$-algebras

a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Lie Algebras of Derivations and Resolvent Algebras

This paper analyzes the action δ of a Lie algebra X by derivations on a C*–algebra A. This action satisfies an “almost inner” property which ensures affiliation of the generators of the derivations δ with A, and is expressed in terms of corresponding pseudo–resolvents. In particular, for an abelian Lie algebra X acting on a primitive C*–algebra A, it is shown that there is a central extension o...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Characterization of Lie higher Derivations on $C^{*}$-algebras

Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the‎ ‎center of $mathcal{A}$‎. ‎A sequence ${L_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in  ‎mathcal{A}$ and all $ngeqslant0$‎. ‎We show that‎ ‎${L_{n}}_{n...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 3

صفحات  897- 910

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023